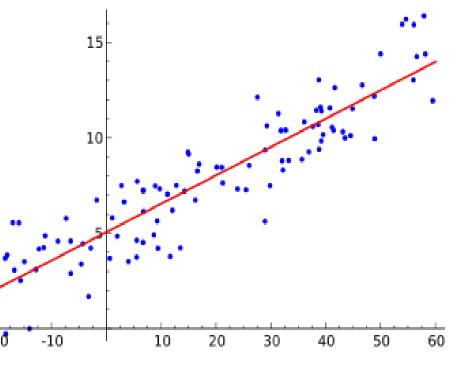


Objetivos de la sesión

Repasar de manera sencilla:

- ¿Qué son los modelos matemáticos?
- ¿Qué es la regresión lineal?
- ¿Cuál es el modelo matemático de la regresión lineal?
- ¿Cómo se leen los resultados del modelo?
- ¿Qué es el método de mínimos cuadrados?
- ¿Cuáles son los requisitos para la regresión lineal?
- ¿Qué es el contraste de regresión?



¿Por qué necesitamos conocer regresión?

La regresión permite responder preguntas como:

- ¿Cómo influyen los factores económicos y de salud en los casos de COVID?
- ¿El nivel de pobreza explica el voto por un partido político?
- ¿Podemos predecir resultados electorales usando encuestas y características demográficas?

Sirve tanto para **explicar relaciones** como para **hacer predicciones** fundamentadas en datos.

Breve historia

La idea de regresión surge en 1886 con Francis Galton, quien estudió la relación entre la altura de los padres y la altura de los hijos. Observó que los hijos de padres muy altos tendían a ser más bajos y los hijos de padres muy bajos tendían a ser más altos, fenómeno que llamó "regression to the mean".

Posteriormente, **Karl Pearson** desarrolló las bases matemáticas de la correlación y la regresión, estableciendo los cimientos de la estadística moderna aplicada en ciencias sociales y economía.

¿Qué son los modelos matemáticos?

Es la función matemática que propone un tipo de relación entre una variable dependiente (Y) y una o más variables independientes:

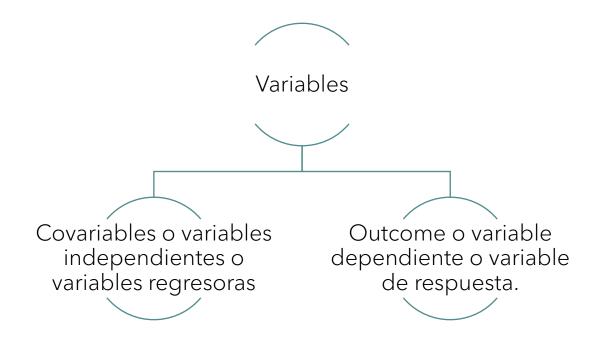
- MODELO DETERMINÍSTICO: Supone que bajo condiciones ideales, el comportamiento de la variable dependiente puede ser totalmente descrito por una función matemática de variables independientes.
 PREDICE SIN ERROR. Ejemplo: Ley de la Gravedad.
- MODELO ESTADÍSTICO: permite la incorporación de un componente aleatorio en la función. En consecuencia, las predicciones obtenidas tendrán asociado un ERROR DE PREDICCIÓN. Ejemplo: Relación de la altura con la edad en niños.

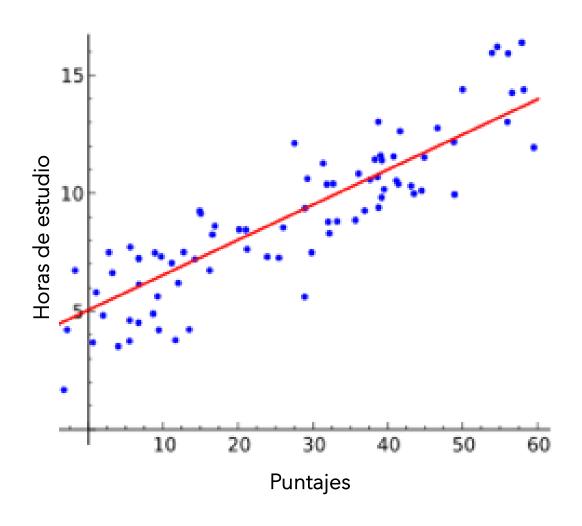
¿Qué es la regresión lineal?

Es un modelo estadístico que involucra el análisis de la relación entre dos variables para:

- Formalizar y entender relaciones teóricas entre variables
- Investigar si existe una asociación entre las dos variables.
- Estudiar la fuerza de la asociación (coeficiente de correlación).
- Estudiar la forma de la relación.

Se propone un modelo que mide el efecto de una variable independiente (X) en una variable dependiente (Y).



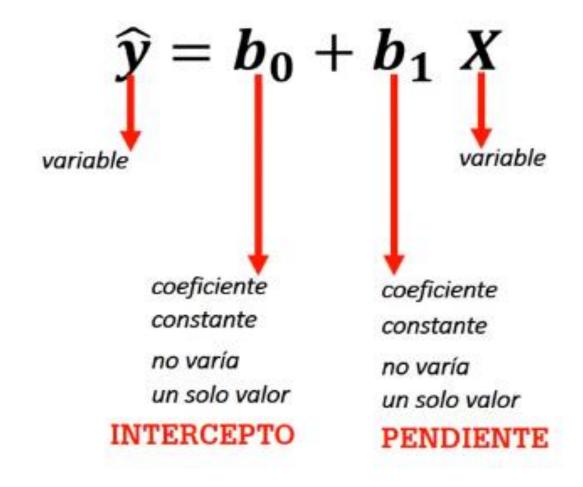


Si queremos saber si **a más horas de estudio se obtienen mejores notas**, podemos hacer un gráfico simple:

- En el eje X: horas de estudio
- En el eje Y: nota del examen

Si los puntos muestran una tendencia ascendente, una línea recta puede resumir esa relación y permitirnos predecir el desempeño de otros estudiantes.

Regresión lineal



Regresión lineal

En la vida real, muchos fenómenos tienen más de un factor explicativo.

Ejemplo: los casos de COVID pueden depender de la inversión en salud, el gasto en los hogares y el nivel de morbilidad.

La ecuación general es:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_X X_X + \in$$

Estimación en R

Para calcular un modelo en R usamos la función lm():

```
modelo <- lm(casos_100k ~ var3 + var5 + var20, data = data) summary(modelo)
```

Este comando nos entrega:

- Coeficientes estimados
- Errores estándar y p-valores
- Medida de ajuste R²

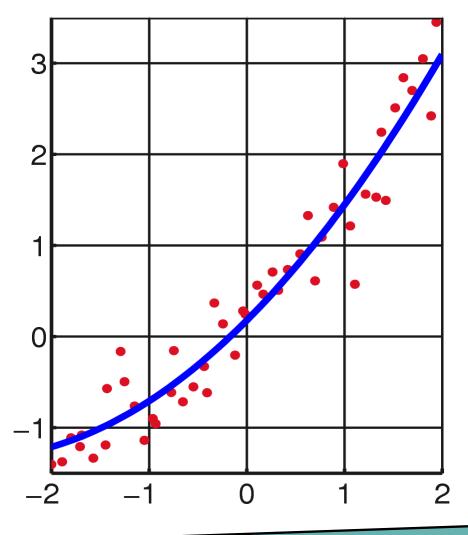
```
Call:
lm(formula = competitividad$casos_100k ~ competitividad$var3 +
   competitividad$var5 + competitividad$var20)
Residuals:
    Min
            10 Median
                                   Max
-800.31 -360.70
                  8.18 340.91 1331.92
Coefficients:
                      Estimate Std. Error t value Pr(>|t|)
(Intercept)
                     1.811e+03 1.206e+03
competitividad$var3
                     2.382e-02 8.178e-03
                    1.484e+00 4.165e-01
competitividad$var5
                                         3.563 0.00207 **
competitividad$var20 -3.678e+01 1.550e+01 -2.373 0.02833 *
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 548.8 on 19 degrees of freedom
Multiple R-squared: 0.7314,
                              Adjusted R-squared: 0.689
F-statistic: 17.25 on 3 and 19 DF, p-value: 1.185e-05
```

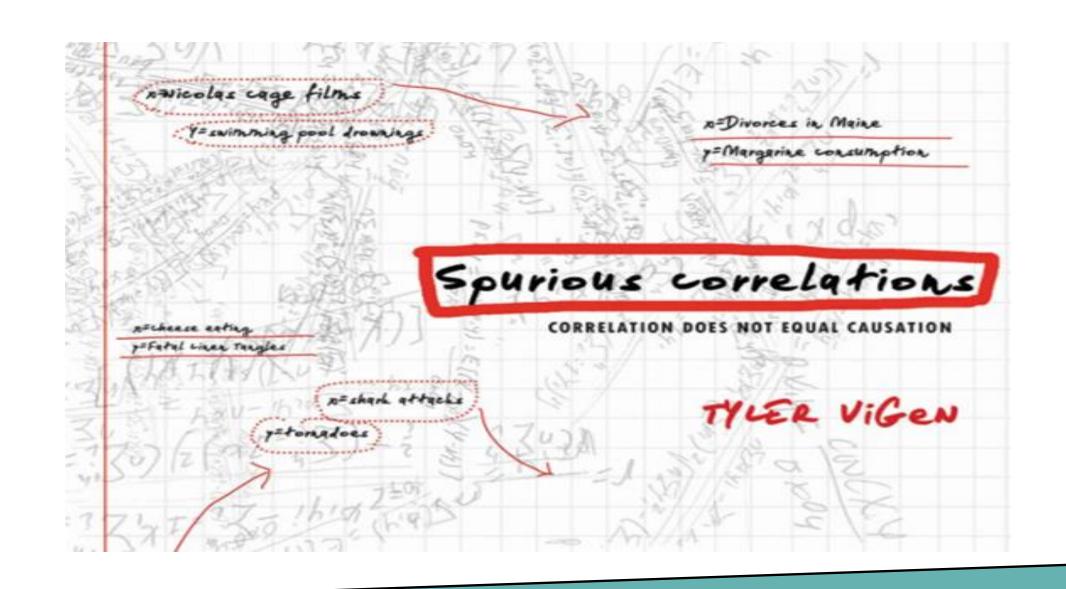
¿Qué es el Método de Mínimos cuadrados?

Es aquella recta en la cual la ecuación que predice los cambios es la "mejor" línea en cuanto a la reducción de las distancias entre los valores observados y los valores que se predicen.

Si la línea está cerca de las observaciones, los residuales tienden a ser pequeños.

El R cuadrado: Cuanta variación podemos explicar en la variable dependiente a partir de la(s) explicativa(s). Cuanto más se acerca R2 a 1, más fuerte es la asociación lineal y más efectiva es la línea recta $y = \alpha + bx$ para predecir la variable dependiente o de respuesta





01/08/2025 12

Hipótesis en regresión

Cada coeficiente se contrasta con la hipótesis:

- H0: el coeficiente es cero (la variable no tiene efecto).
- HA: el coeficiente es distinto de cero (la variable sí influye).

Si el p-valor es menor a 0.05, se considera estadísticamente significativo.

```
Call:
lm(formula = competitividad$casos_100k ~ competitividad$var3 +
    competitividad$var5 + competitividad$var20)
Residuals:
    Min
             10 Median
-800.31 -360.70
                  8.18 340.91 1331.92
Coefficients:
                       Estimate Std. Error t value Pr(>|t|)
(Intercept)
                      1.811e+03 1.206e+03
competitividad$var3
                      2.382e-02 8.178e-03
competitividad$var5
                     1.484e+00 4.165e-01
                                            3.563 0.00207 **
competitividad$var20 -3.678e+01 1.550e+01 -2.373 0.02833 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 548.8 on 19 degrees of freedom
Multiple R-squared: 0.7314,
                               Adjusted R-squared: 0.689
F-statistic: 17.25 on 3 and 19 DF, p-value: 1.185e-05
```

Supuestos del modelo

Relación lineal entre predictores y respuesta

Los residuos tienen distribución normal

Homocedasticidad: varianza constante de los residuos

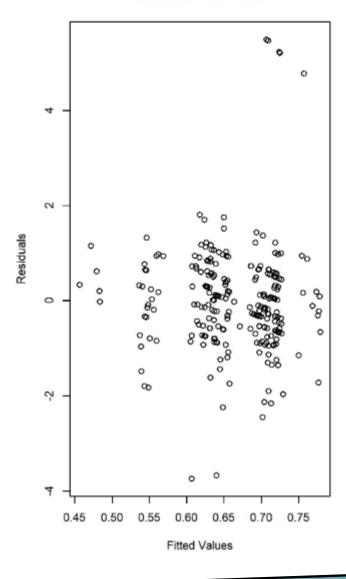
Independencia de los residuos Ausencia de multicolinealidad entre variables explicativas

Supuesto de linealidad

La relación entre las variables explicativas y la respuesta debe ser **lineal**.

Se verifica graficando los residuos contra los valores ajustados: si los puntos se dispersan alrededor de cero sin un patrón claro, el supuesto se cumple.

Residuals vs. Fitted



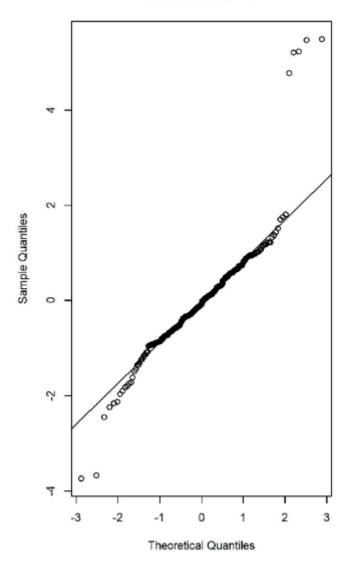
Supuesto de normalidad

Los errores del modelo deben seguir una distribución normal.

Se revisa con un gráfico QQ-Plot: los puntos deberían alinearse sobre la diagonal.

También puede comprobarse con la prueba de Shapiro-Wilk.

Normal Q-Q Plot



Supuesto de homocedasticidad

La varianza de los residuos debe ser constante.

Si la dispersión de los residuos aumenta o disminuye a medida que cambian los valores ajustados, hay heterocedasticidad.

El test Breusch-Pagan permite comprobarlo formalmente.

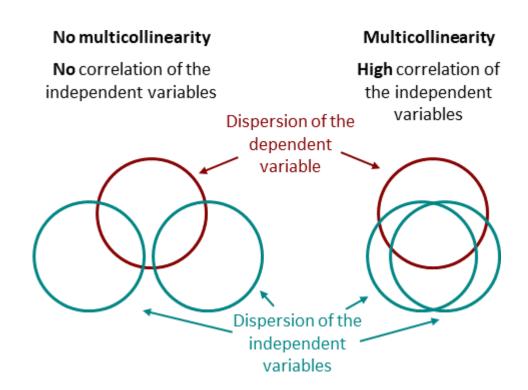
$$\sigma^2 = \frac{\sum \mu_i^2}{n}$$

where, n is the number of observations $\sum \mu_i^2 \text{ is the sum of squared residuals}$

Supuesto de multicolinealidad

Cuando dos o más variables explicativas están fuertemente correlacionadas, los coeficientes pueden volverse inestables.

Se detecta con el **Factor de Inflación de Varianza (VIF)**: valores mayores a 5 o 10 indican problema.



Supuesto de independencia

Los residuos deben ser independientes entre sí.

Si hay patrón en el tiempo o en el orden de los datos, se viola el supuesto.

Se usa el **test de Durbin-Watson** para evaluar autocorrelación.

$$DW = \frac{\sum_{t=2}^{n} (\hat{u}_t - \hat{u}_{t-1})^2}{\sum_{t=1}^{n} \hat{u}_t^2}$$

¿Qué pasa si fallan los supuestos?

Si los supuestos no se cumplen:

- Transformar variables (logaritmos, potencias).
- Usar estimadores robustos frente a heterocedasticidad.
- Revisar colinealidad y eliminar variables redundantes.
- Considerar otros modelos como regresión logística o modelos no lineales.

Tipo de regression	Cuándo se usa	Ejemplo
Lineal simple	Una X y Y continua	Horas de estudio → nota
Lineal múltiple	Varias X y Y continua	Factores socioeconómicos → COVID
Logística	Y binaria (0/1)	Votar o no votar
Poisson / Neg. Binomial	Datos de conteo	Número de protestas por año
Cox (supervivencia)	Tiempo hasta evento	Duración de gobiernos
Multinivel (mixto)	Datos jerárquicos	Grado educativo

